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In Support of Anionic Hyperconjugation. 
The Versatile Methyl Group 

Sir: 

The direction of secondary isotope effects on the rates of 
solvolytic reactions proceeding through carbocationic transi­
tion states1 and on gas phase equilibria involving stable car-
bocations2 has been ascribed to hyperconjugation. In the lan­
guage of perturbation molecular orbital theory,3 interaction 
of the highest filled, x symmetry, orbital on a methyl (CD3) 
group with the vacant p function at C+ results not only in net 
energetic stabilization but also in significant charge reorgan­
ization. Specifically, electron density is removed from the 
methyl CH linkages, resulting in their weakening. The asso­
ciated reduction in CH stretching force constants leads directly 
to the observed kinetic and thermodynamic preference for 
formation of the light cation.4 

In this communication we present experimental and theo­
retical evidence in support of the notion that hyperconjugative 
factors are also operative in the interaction of anionic centers 
with alkyl substituents. Our data have led us to conclude that 
a methyl group attached to a center of negative charge may 
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Figure 1. Interaction of a methyl group with the lone pair on an anionic 
center. 

act as an electron acceptor. Furthermore, they indicate that 
the intrinsic electron-withdrawing ability of a methyl group 
is comparable with, if not greater than, its ability to donate 
charge in those instances where it is attached to an electron-
deficient center. 

We have determined by pulsed ion cyclotron resonance 
spectroscopy5 the free energies of the proton transfer equilibria 
1, 2, and 3 

CD 3NH-+ CH3NH2 — CD3NH2 + CH3NH- (1) 

AG° = -0.37 ± 0.08 kcal/mol6'7 

CD3O- + CH3OH — CD3OH + CH3O" (2) 

AG0 = -0.50 ± 0.10 kcal/mol6 

CD 3S-+ CH3SH ^ CD3SH + CH3S- (3) 

AG0 = -0.30 ± 0.08 kcal/mol6 

involving formation, in the gas phase, of the methylamino, 
methoxy, and thiomethoxy anions. In all three cases equilib­
rium lies to the right (i.e., favors the formation of the light ion), 
the same preference which has been observed thermodynam-
ically2 and kinetically' for processes leading to the buildup of 
positive charge adjacent to a methyl probe (e.g., reaction 
A)? 

(CD3)3C+ + (CH3)3CC1 ^ (CD3)3CC1 + (CH3)3C+ (4) 

AG0 (per CD3) = -0.12 ± 0.05 kcal/mol6 

The preferences are also in the same direction, but of far 
greater magnitude, than secondary effects noted kinetically 
in solution for reactions leading through what are suspected 
to be anionic transition states.8 

The observed isotope effects may be rationalized using the 
perturbation molecular orbital theory.3 Interaction of a methyl 
group with the lone pair on an anionic center to which it is at­
tached through the a system is describable in terms of stabi­
lizing and destabilizing components (Figure 1). The four-
electron term, 1, involving interaction of the methyl w orbital 
and the lone pair at the anion center, results in net energetic 
destabilization. Both functions are fully occupied, and little 
if any redistribution of electron density is to be expected. 
Significant charge reorganization is to be anticipated as a result 
of the stabilizing two-electron interaction, 2. Specifically, 
electron density is shifted away from the nonbonded lone pair 
at the anion center and directed into a CH antibonding orbital 
on methyl. As a result the CH bonds should weaken giving rise 
to the observed isotopic preference for formation of the light 
anion. 

Ab initio molecular orbital calculations at the minimal basis 
STO-3G level9,10 concur with the conclusions of the simple 
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perturbation model. In particular, calculated CH bond lengths 
for the methylamino, methoxy, and thiomethoxy anions are 
significantly longer than those in the corresponding neutral 
precursors. Preliminary calculations using the split-valence-
shell 4-3IG basis representation1' substantiate these conclu­
sions. 
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It is, of course, an oversimplification to ascribe the observed 
secondary /3-deterium isotope effects in these systems to 
changes in CH stretching force constants alone. Other factors 
(i.e., changes in bending force constants) no doubt contribute 
to the total, and need to be considered in any complete analysis. 
The preliminary results of theoretical studies, aimed at ob­
taining the energies of processes such as 1-3 from first prin­
ciples, using complete quadratic force fields from ab initio 
molecular orbital calculations, suggest, however, that changes 
in CH stretching force constants are the primary cause behind 
the observed isotope effects.12 

The connection between the results of the perturbation 
molecular orbital treatment and those of classical resonance 
theory should be noted. Just as the predicted CH bond 
lengthening (and CC bond shortening) in a species such as the 
tert-buty\ cation may be ascribed to contributions of hyper­
conjugative resonance structures of the form 

CH 

CH, 

V 
j : —CH. 

CH 

CH, 
> 

H+ 

'C=CH2 etc. 

the calculated geometrical distortions (and observed equilib­
rium isotope effects) for the methylamino, methoxy, and thi­
omethoxy anions indicate the involvement of the corresponding 
negative hyperconjugative structures 

H-
H 3 C - X - ** H2C=X ** etc. 

Although resonance structures such as these have often been 
written in cases where F - is detached13 (i.e., >C~—CF3 ** 
>C=CF2 F -) , the notion of negative hyperconjugation for 
simple alkyl substituents attached to anionic centers has not 
received support. This is probably due to the fact that, in so­
lution, alkyl groups inevitably act to decrease rather than to 
increase acidity.14 This is not always the case in the gas phase, 
for here methylamine is a stronger acid than ammonia,15 and 
methanol a stronger acid than water.16 Methanethiol is, 
however, a weaker acid than hydrogen sulfide.17 It should be 
emphasized, therefore, that relative acidity is not an appro­
priate measure of the importance of anionic hyperconjugation. 
Other factors need to be considered, in particular, the extent 
of repulsive interactions between the methyl group and the 
anionic center. The magnitudes and directions of secondary 
isotope effects are, on the other hand, appropriate indicators, 
for they are a direct reflection of the changes in bonding which 
occur as a result of anion formation.18 For the systems con­
sidered here, these quantities suggest the importance of neg­

ative hyperconjugative structures involving hydrogen and, 
therefore, the ability of a methyl group to act as an electron 
acceptor. This observation, taken together with those on 
electron-deficient systems, indicates that the methyl substit-
uent is capable of adopting to its immediate environment, 
serving to donate or to accept electronic charge depending on 
the needs of the moiety to which it is attached. 
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